viernes, 24 de junio de 2011

Las Hormonas Tiroideas en Sangre



El organismo no utiliza directamente las hormonas que el tiroides produce. Utiliza las hormonas que se producen el fraccionamiento de la Tiroglobulina, básicamente Tiroxina (T4) y Triyodotironina (T3) Decíamos que la Tiroxina (T4) tiene 4 átomos de yodo por molécula, la Triyodotironina tiene solamente 3 átomos (T3). La proporción de T3 es muy baja en relación con la T4, sin embargo la T3 es la molécula realmente activa.



Pasan por tanto a la sangre la T4 y la T3 y estas moléculas, que son hormonalmente activas, no andan sueltas en la sangre, sino que utilizan en este caso un "transportador".


Ambas se unen a una proteína específica que, para no complicarse mucho la vida, los investigadores han llamado "proteína transportadora de compuestos yodados" (PBI de las siglas en inglés).

También en este caso la mayor parte de la T4 y la T3 circulan en sangre en su forma "ligada-a-la-proteína" y sólo en una proporción muy pequeña en su forma libre.


Para indicar las hormonas T4 y T3 que circulan sin ligar, es decir, en su forma libre, las denominamos T4-Libre (T4L) y T3-Libre (T3L). Esta fracción mínima constituye las auténticas hormonas activas.

A partir de la T1 (MIT) y T2 (DIT) se forman la T4 y T3 que se almacenan en el Tiroides como Tiroglobulina, que según las necesidades se fracciona por hidrólisis en el propio tiroides liberándose T4 y T3. Estas circulan en sangre como T4 y T3 unidas a una proteína y sólo en una pequeña fracción como T4L y T3L.

Durante mucho tiempo sólo hemos dispuesto de métodos para valorar la T4 y la T3 totales, y esto ya era un éxito, porque hasta que en la década de los 70 no se dispuso de las técnicas de radioinmunoanális (ya hablaremos de esto al comentar los métodos de estudio del tiroides), solo podíamos disponer de los valores de PBI, porque la cuantía en sangre de estas hormonas es muy baja (del orden de microgramos y nanogramos) y no teníamos métodos analíticos que afinaran tanto.


Pero la valoración de T4 y T3 mide la cantidad total de estas hormonas en sangre, tanto las ligadas como las libres, y nos interesan las formas activas.

Hace aproximadamente unos 10 años se mejoraron las técnicas de inmunoanálisis y ahora podemos cuantificar también la T4 Libre de forma rutinaria y la T3 Libre, esta con mas dificultad y todavía en centros de investigación.

Como se regula la producción, secreción y paso de las hormonas a la sangre.La Hipófisis, la TSH y sus funciones en el equilibrio hormonal.

El organismo está bien organizado y funciona con múltiples sistemas de regulación. De alguno de estos sistemas reguladores sabemos poco, de otros sabemos algo mas, de la regulación del tiroides sabemos bastantes cosas.



Un mecanismo de regulación que todos conocemos es el termostato que controla la temperatura de las habitaciones con la calefacción o el aire acondicionado.

Si colocamos el termostato a una temperatura determinada, cuando en la habitación se alcanza esa temperatura se interrumpe la calefacción o la entrada de aire frío.

La dilatación o la contracción de una espiral de un metal o de una aleación sensible a las variaciones de temperatura conecta o desconecta el sistema.

El ejemplo simple es totalmente válido para comprender el mecanismo de regulación de la función del tiroides.


La hipófisis es probablemente la glándula más importante del organismo, ya que regula la función de bastantes glándulas endocrinas. Si es tejido glandular iba a originarse en el embrión en el ectodermo, es decir, a partir e la piel o de las mucosas.

En este caso la hipófisis se origina en la parte superior del paladar, en el "cielo de la boca", y asciende hasta la parte inferior del cerebro, quedando alojada en una pequeña cavidad que el hueso fabrica para ella y que a alguien se le ocurrió llamar "silla turca", que realmente tiene forma de nido.

Es sin ningún género de duda la zona mas protegida del organismo y es también la mejor irrigada, estando rodeada por un circulo de vasos que aseguran su riego sanguíneo en cualquier circunstancia. El organismo coloca a la hipófisis en condiciones de "alta seguridad": Por algo será.


La hipófisis regula la función de las glándulas suprarrenales, de los ovarios, y conjuntamente con ellos de los ciclos menstruales y del embarazo, de las glándulas mamarias y la secreción láctea, de los testículos y toda la función androgénica y del tiroides.
Centremos nuestra atención en el tiroides.

La hormona que regula la función tiroidea y que se produce en la hipófisis tiene un nombre muy poco original, se llama "hormona estimulante del tiroides", y se ha adoptado universalmente la abreviatura TSH ( Thyroid Stimulating Hormone ) de la literatura inglesa y es el termostato que activa o desconecta la actividad del tiroides.
Es un mecanismo muy simple y de una precisión exquisita: Cuando el nivel de hormonas tiroideas baja en sangre, la hipófisis lo detecta y aumenta la producción de TSH que estimula al tiroides para que produzca y libere mas hormona tiroidea; cuando el nivel de hormonas tiroideas es alto, la hipófisis se frena, baja la TSH en sangre y el tiroides ralentiza su actividad. Tan sencillo y tan sensible como el acelerador de un coche que estuviera ajustado a una velocidad fija.

El mecanismo fisiológico y bioquímico, no es realmente tan sencillo. Los investigadores son gentes que se ganan su sueldo.

El mecanismo se realiza a través del hipotálamo, que está en el cerebro inmediatamente por encima de la hipófisis y unida a ella por el "tallo hipofisario", y existe un neurotransmisor que estimula a la hipófisis a través de la TRH (tirotropin releasing hormone, - la TSH también se llama tirotropina-). Quizá al hablar de las alteraciones o patología de la función tiroidea volvamos a insistir en el tema, pero ahora estamos hablando de la Fisiología, es decir del Tiroides Normal.

Con esto a grandes rasgos creo que podemos entender cómo funciona el tiroides y podemos pasar a comentar cómo son y como actúan en el organismo las hormonas tiroideas.

No hay comentarios:

Publicar un comentario